metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C23.11D30, Dic15.20D4, (C2×C4).8D30, C22⋊C4⋊5D15, C6.101(D4×D5), (C2×C20).34D6, C2.10(D4×D15), D30⋊3C4⋊6C2, (C2×Dic30)⋊6C2, (C2×C12).34D10, C30.309(C2×D4), C10.103(S3×D4), (C4×Dic15)⋊18C2, C6.98(C4○D20), C30.38D4⋊5C2, C15⋊19(C4.4D4), (C22×C6).60D10, (C22×C10).75D6, C10.98(C4○D12), C30.171(C4○D4), C6.93(D4⋊2D5), C2.9(D4⋊2D15), (C2×C60).175C22, (C2×C30).282C23, C3⋊5(Dic5.5D4), C5⋊5(C23.11D6), C10.93(D4⋊2S3), (C22×C30).16C22, C2.12(D60⋊11C2), (C2×Dic15).8C22, (C22×D15).5C22, C22.44(C22×D15), (C5×C22⋊C4)⋊7S3, (C3×C22⋊C4)⋊7D5, (C15×C22⋊C4)⋊9C2, (C2×C15⋊7D4).4C2, (C2×C6).278(C22×D5), (C2×C10).277(C22×S3), SmallGroup(480,850)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C23.11D30
G = < a,b,c,d,e | a2=b2=c2=1, d30=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd29 >
Subgroups: 932 in 152 conjugacy classes, 49 normal (47 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C15, C42, C22⋊C4, C22⋊C4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, Dic6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, D15, C30, C30, C4.4D4, Dic10, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C4×Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, C2×C3⋊D4, Dic15, Dic15, C60, D30, C2×C30, C2×C30, C4×Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C2×Dic10, C2×C5⋊D4, C23.11D6, Dic30, C2×Dic15, C15⋊7D4, C2×C60, C22×D15, C22×C30, Dic5.5D4, C4×Dic15, D30⋊3C4, C30.38D4, C15×C22⋊C4, C2×Dic30, C2×C15⋊7D4, C23.11D30
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C22×S3, D15, C4.4D4, C22×D5, C4○D12, S3×D4, D4⋊2S3, D30, C4○D20, D4×D5, D4⋊2D5, C23.11D6, C22×D15, Dic5.5D4, D60⋊11C2, D4×D15, D4⋊2D15, C23.11D30
(1 216)(2 87)(3 218)(4 89)(5 220)(6 91)(7 222)(8 93)(9 224)(10 95)(11 226)(12 97)(13 228)(14 99)(15 230)(16 101)(17 232)(18 103)(19 234)(20 105)(21 236)(22 107)(23 238)(24 109)(25 240)(26 111)(27 182)(28 113)(29 184)(30 115)(31 186)(32 117)(33 188)(34 119)(35 190)(36 61)(37 192)(38 63)(39 194)(40 65)(41 196)(42 67)(43 198)(44 69)(45 200)(46 71)(47 202)(48 73)(49 204)(50 75)(51 206)(52 77)(53 208)(54 79)(55 210)(56 81)(57 212)(58 83)(59 214)(60 85)(62 142)(64 144)(66 146)(68 148)(70 150)(72 152)(74 154)(76 156)(78 158)(80 160)(82 162)(84 164)(86 166)(88 168)(90 170)(92 172)(94 174)(96 176)(98 178)(100 180)(102 122)(104 124)(106 126)(108 128)(110 130)(112 132)(114 134)(116 136)(118 138)(120 140)(121 231)(123 233)(125 235)(127 237)(129 239)(131 181)(133 183)(135 185)(137 187)(139 189)(141 191)(143 193)(145 195)(147 197)(149 199)(151 201)(153 203)(155 205)(157 207)(159 209)(161 211)(163 213)(165 215)(167 217)(169 219)(171 221)(173 223)(175 225)(177 227)(179 229)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(121 151)(122 152)(123 153)(124 154)(125 155)(126 156)(127 157)(128 158)(129 159)(130 160)(131 161)(132 162)(133 163)(134 164)(135 165)(136 166)(137 167)(138 168)(139 169)(140 170)(141 171)(142 172)(143 173)(144 174)(145 175)(146 176)(147 177)(148 178)(149 179)(150 180)(181 211)(182 212)(183 213)(184 214)(185 215)(186 216)(187 217)(188 218)(189 219)(190 220)(191 221)(192 222)(193 223)(194 224)(195 225)(196 226)(197 227)(198 228)(199 229)(200 230)(201 231)(202 232)(203 233)(204 234)(205 235)(206 236)(207 237)(208 238)(209 239)(210 240)
(1 166)(2 167)(3 168)(4 169)(5 170)(6 171)(7 172)(8 173)(9 174)(10 175)(11 176)(12 177)(13 178)(14 179)(15 180)(16 121)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 148)(44 149)(45 150)(46 151)(47 152)(48 153)(49 154)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 162)(58 163)(59 164)(60 165)(61 191)(62 192)(63 193)(64 194)(65 195)(66 196)(67 197)(68 198)(69 199)(70 200)(71 201)(72 202)(73 203)(74 204)(75 205)(76 206)(77 207)(78 208)(79 209)(80 210)(81 211)(82 212)(83 213)(84 214)(85 215)(86 216)(87 217)(88 218)(89 219)(90 220)(91 221)(92 222)(93 223)(94 224)(95 225)(96 226)(97 227)(98 228)(99 229)(100 230)(101 231)(102 232)(103 233)(104 234)(105 235)(106 236)(107 237)(108 238)(109 239)(110 240)(111 181)(112 182)(113 183)(114 184)(115 185)(116 186)(117 187)(118 188)(119 189)(120 190)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 30 136 165)(2 164 137 29)(3 28 138 163)(4 162 139 27)(5 26 140 161)(6 160 141 25)(7 24 142 159)(8 158 143 23)(9 22 144 157)(10 156 145 21)(11 20 146 155)(12 154 147 19)(13 18 148 153)(14 152 149 17)(15 16 150 151)(31 60 166 135)(32 134 167 59)(33 58 168 133)(34 132 169 57)(35 56 170 131)(36 130 171 55)(37 54 172 129)(38 128 173 53)(39 52 174 127)(40 126 175 51)(41 50 176 125)(42 124 177 49)(43 48 178 123)(44 122 179 47)(45 46 180 121)(61 80 221 240)(62 239 222 79)(63 78 223 238)(64 237 224 77)(65 76 225 236)(66 235 226 75)(67 74 227 234)(68 233 228 73)(69 72 229 232)(70 231 230 71)(81 120 181 220)(82 219 182 119)(83 118 183 218)(84 217 184 117)(85 116 185 216)(86 215 186 115)(87 114 187 214)(88 213 188 113)(89 112 189 212)(90 211 190 111)(91 110 191 210)(92 209 192 109)(93 108 193 208)(94 207 194 107)(95 106 195 206)(96 205 196 105)(97 104 197 204)(98 203 198 103)(99 102 199 202)(100 201 200 101)
G:=sub<Sym(240)| (1,216)(2,87)(3,218)(4,89)(5,220)(6,91)(7,222)(8,93)(9,224)(10,95)(11,226)(12,97)(13,228)(14,99)(15,230)(16,101)(17,232)(18,103)(19,234)(20,105)(21,236)(22,107)(23,238)(24,109)(25,240)(26,111)(27,182)(28,113)(29,184)(30,115)(31,186)(32,117)(33,188)(34,119)(35,190)(36,61)(37,192)(38,63)(39,194)(40,65)(41,196)(42,67)(43,198)(44,69)(45,200)(46,71)(47,202)(48,73)(49,204)(50,75)(51,206)(52,77)(53,208)(54,79)(55,210)(56,81)(57,212)(58,83)(59,214)(60,85)(62,142)(64,144)(66,146)(68,148)(70,150)(72,152)(74,154)(76,156)(78,158)(80,160)(82,162)(84,164)(86,166)(88,168)(90,170)(92,172)(94,174)(96,176)(98,178)(100,180)(102,122)(104,124)(106,126)(108,128)(110,130)(112,132)(114,134)(116,136)(118,138)(120,140)(121,231)(123,233)(125,235)(127,237)(129,239)(131,181)(133,183)(135,185)(137,187)(139,189)(141,191)(143,193)(145,195)(147,197)(149,199)(151,201)(153,203)(155,205)(157,207)(159,209)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,166)(2,167)(3,168)(4,169)(5,170)(6,171)(7,172)(8,173)(9,174)(10,175)(11,176)(12,177)(13,178)(14,179)(15,180)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,162)(58,163)(59,164)(60,165)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,211)(82,212)(83,213)(84,214)(85,215)(86,216)(87,217)(88,218)(89,219)(90,220)(91,221)(92,222)(93,223)(94,224)(95,225)(96,226)(97,227)(98,228)(99,229)(100,230)(101,231)(102,232)(103,233)(104,234)(105,235)(106,236)(107,237)(108,238)(109,239)(110,240)(111,181)(112,182)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,30,136,165)(2,164,137,29)(3,28,138,163)(4,162,139,27)(5,26,140,161)(6,160,141,25)(7,24,142,159)(8,158,143,23)(9,22,144,157)(10,156,145,21)(11,20,146,155)(12,154,147,19)(13,18,148,153)(14,152,149,17)(15,16,150,151)(31,60,166,135)(32,134,167,59)(33,58,168,133)(34,132,169,57)(35,56,170,131)(36,130,171,55)(37,54,172,129)(38,128,173,53)(39,52,174,127)(40,126,175,51)(41,50,176,125)(42,124,177,49)(43,48,178,123)(44,122,179,47)(45,46,180,121)(61,80,221,240)(62,239,222,79)(63,78,223,238)(64,237,224,77)(65,76,225,236)(66,235,226,75)(67,74,227,234)(68,233,228,73)(69,72,229,232)(70,231,230,71)(81,120,181,220)(82,219,182,119)(83,118,183,218)(84,217,184,117)(85,116,185,216)(86,215,186,115)(87,114,187,214)(88,213,188,113)(89,112,189,212)(90,211,190,111)(91,110,191,210)(92,209,192,109)(93,108,193,208)(94,207,194,107)(95,106,195,206)(96,205,196,105)(97,104,197,204)(98,203,198,103)(99,102,199,202)(100,201,200,101)>;
G:=Group( (1,216)(2,87)(3,218)(4,89)(5,220)(6,91)(7,222)(8,93)(9,224)(10,95)(11,226)(12,97)(13,228)(14,99)(15,230)(16,101)(17,232)(18,103)(19,234)(20,105)(21,236)(22,107)(23,238)(24,109)(25,240)(26,111)(27,182)(28,113)(29,184)(30,115)(31,186)(32,117)(33,188)(34,119)(35,190)(36,61)(37,192)(38,63)(39,194)(40,65)(41,196)(42,67)(43,198)(44,69)(45,200)(46,71)(47,202)(48,73)(49,204)(50,75)(51,206)(52,77)(53,208)(54,79)(55,210)(56,81)(57,212)(58,83)(59,214)(60,85)(62,142)(64,144)(66,146)(68,148)(70,150)(72,152)(74,154)(76,156)(78,158)(80,160)(82,162)(84,164)(86,166)(88,168)(90,170)(92,172)(94,174)(96,176)(98,178)(100,180)(102,122)(104,124)(106,126)(108,128)(110,130)(112,132)(114,134)(116,136)(118,138)(120,140)(121,231)(123,233)(125,235)(127,237)(129,239)(131,181)(133,183)(135,185)(137,187)(139,189)(141,191)(143,193)(145,195)(147,197)(149,199)(151,201)(153,203)(155,205)(157,207)(159,209)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,166)(2,167)(3,168)(4,169)(5,170)(6,171)(7,172)(8,173)(9,174)(10,175)(11,176)(12,177)(13,178)(14,179)(15,180)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,162)(58,163)(59,164)(60,165)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,211)(82,212)(83,213)(84,214)(85,215)(86,216)(87,217)(88,218)(89,219)(90,220)(91,221)(92,222)(93,223)(94,224)(95,225)(96,226)(97,227)(98,228)(99,229)(100,230)(101,231)(102,232)(103,233)(104,234)(105,235)(106,236)(107,237)(108,238)(109,239)(110,240)(111,181)(112,182)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,30,136,165)(2,164,137,29)(3,28,138,163)(4,162,139,27)(5,26,140,161)(6,160,141,25)(7,24,142,159)(8,158,143,23)(9,22,144,157)(10,156,145,21)(11,20,146,155)(12,154,147,19)(13,18,148,153)(14,152,149,17)(15,16,150,151)(31,60,166,135)(32,134,167,59)(33,58,168,133)(34,132,169,57)(35,56,170,131)(36,130,171,55)(37,54,172,129)(38,128,173,53)(39,52,174,127)(40,126,175,51)(41,50,176,125)(42,124,177,49)(43,48,178,123)(44,122,179,47)(45,46,180,121)(61,80,221,240)(62,239,222,79)(63,78,223,238)(64,237,224,77)(65,76,225,236)(66,235,226,75)(67,74,227,234)(68,233,228,73)(69,72,229,232)(70,231,230,71)(81,120,181,220)(82,219,182,119)(83,118,183,218)(84,217,184,117)(85,116,185,216)(86,215,186,115)(87,114,187,214)(88,213,188,113)(89,112,189,212)(90,211,190,111)(91,110,191,210)(92,209,192,109)(93,108,193,208)(94,207,194,107)(95,106,195,206)(96,205,196,105)(97,104,197,204)(98,203,198,103)(99,102,199,202)(100,201,200,101) );
G=PermutationGroup([[(1,216),(2,87),(3,218),(4,89),(5,220),(6,91),(7,222),(8,93),(9,224),(10,95),(11,226),(12,97),(13,228),(14,99),(15,230),(16,101),(17,232),(18,103),(19,234),(20,105),(21,236),(22,107),(23,238),(24,109),(25,240),(26,111),(27,182),(28,113),(29,184),(30,115),(31,186),(32,117),(33,188),(34,119),(35,190),(36,61),(37,192),(38,63),(39,194),(40,65),(41,196),(42,67),(43,198),(44,69),(45,200),(46,71),(47,202),(48,73),(49,204),(50,75),(51,206),(52,77),(53,208),(54,79),(55,210),(56,81),(57,212),(58,83),(59,214),(60,85),(62,142),(64,144),(66,146),(68,148),(70,150),(72,152),(74,154),(76,156),(78,158),(80,160),(82,162),(84,164),(86,166),(88,168),(90,170),(92,172),(94,174),(96,176),(98,178),(100,180),(102,122),(104,124),(106,126),(108,128),(110,130),(112,132),(114,134),(116,136),(118,138),(120,140),(121,231),(123,233),(125,235),(127,237),(129,239),(131,181),(133,183),(135,185),(137,187),(139,189),(141,191),(143,193),(145,195),(147,197),(149,199),(151,201),(153,203),(155,205),(157,207),(159,209),(161,211),(163,213),(165,215),(167,217),(169,219),(171,221),(173,223),(175,225),(177,227),(179,229)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(121,151),(122,152),(123,153),(124,154),(125,155),(126,156),(127,157),(128,158),(129,159),(130,160),(131,161),(132,162),(133,163),(134,164),(135,165),(136,166),(137,167),(138,168),(139,169),(140,170),(141,171),(142,172),(143,173),(144,174),(145,175),(146,176),(147,177),(148,178),(149,179),(150,180),(181,211),(182,212),(183,213),(184,214),(185,215),(186,216),(187,217),(188,218),(189,219),(190,220),(191,221),(192,222),(193,223),(194,224),(195,225),(196,226),(197,227),(198,228),(199,229),(200,230),(201,231),(202,232),(203,233),(204,234),(205,235),(206,236),(207,237),(208,238),(209,239),(210,240)], [(1,166),(2,167),(3,168),(4,169),(5,170),(6,171),(7,172),(8,173),(9,174),(10,175),(11,176),(12,177),(13,178),(14,179),(15,180),(16,121),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,148),(44,149),(45,150),(46,151),(47,152),(48,153),(49,154),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,162),(58,163),(59,164),(60,165),(61,191),(62,192),(63,193),(64,194),(65,195),(66,196),(67,197),(68,198),(69,199),(70,200),(71,201),(72,202),(73,203),(74,204),(75,205),(76,206),(77,207),(78,208),(79,209),(80,210),(81,211),(82,212),(83,213),(84,214),(85,215),(86,216),(87,217),(88,218),(89,219),(90,220),(91,221),(92,222),(93,223),(94,224),(95,225),(96,226),(97,227),(98,228),(99,229),(100,230),(101,231),(102,232),(103,233),(104,234),(105,235),(106,236),(107,237),(108,238),(109,239),(110,240),(111,181),(112,182),(113,183),(114,184),(115,185),(116,186),(117,187),(118,188),(119,189),(120,190)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,30,136,165),(2,164,137,29),(3,28,138,163),(4,162,139,27),(5,26,140,161),(6,160,141,25),(7,24,142,159),(8,158,143,23),(9,22,144,157),(10,156,145,21),(11,20,146,155),(12,154,147,19),(13,18,148,153),(14,152,149,17),(15,16,150,151),(31,60,166,135),(32,134,167,59),(33,58,168,133),(34,132,169,57),(35,56,170,131),(36,130,171,55),(37,54,172,129),(38,128,173,53),(39,52,174,127),(40,126,175,51),(41,50,176,125),(42,124,177,49),(43,48,178,123),(44,122,179,47),(45,46,180,121),(61,80,221,240),(62,239,222,79),(63,78,223,238),(64,237,224,77),(65,76,225,236),(66,235,226,75),(67,74,227,234),(68,233,228,73),(69,72,229,232),(70,231,230,71),(81,120,181,220),(82,219,182,119),(83,118,183,218),(84,217,184,117),(85,116,185,216),(86,215,186,115),(87,114,187,214),(88,213,188,113),(89,112,189,212),(90,211,190,111),(91,110,191,210),(92,209,192,109),(93,108,193,208),(94,207,194,107),(95,106,195,206),(96,205,196,105),(97,104,197,204),(98,203,198,103),(99,102,199,202),(100,201,200,101)]])
84 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 20A | ··· | 20H | 30A | ··· | 30L | 30M | ··· | 30T | 60A | ··· | 60P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 30 | ··· | 30 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 4 | 60 | 2 | 2 | 2 | 4 | 30 | 30 | 30 | 30 | 60 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
84 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | + | - | + | - | ||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D6 | C4○D4 | D10 | D10 | D15 | C4○D12 | D30 | D30 | C4○D20 | D60⋊11C2 | S3×D4 | D4⋊2S3 | D4×D5 | D4⋊2D5 | D4×D15 | D4⋊2D15 |
kernel | C23.11D30 | C4×Dic15 | D30⋊3C4 | C30.38D4 | C15×C22⋊C4 | C2×Dic30 | C2×C15⋊7D4 | C5×C22⋊C4 | Dic15 | C3×C22⋊C4 | C2×C20 | C22×C10 | C30 | C2×C12 | C22×C6 | C22⋊C4 | C10 | C2×C4 | C23 | C6 | C2 | C10 | C10 | C6 | C6 | C2 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 4 | 4 | 2 | 4 | 4 | 8 | 4 | 8 | 16 | 1 | 1 | 2 | 2 | 4 | 4 |
Matrix representation of C23.11D30 ►in GL6(𝔽61)
47 | 44 | 0 | 0 | 0 | 0 |
33 | 14 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 20 | 1 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
4 | 11 | 0 | 0 | 0 | 0 |
54 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 60 | 6 |
0 | 0 | 0 | 0 | 20 | 1 |
58 | 9 | 0 | 0 | 0 | 0 |
26 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 55 |
0 | 0 | 0 | 0 | 0 | 60 |
G:=sub<GL(6,GF(61))| [47,33,0,0,0,0,44,14,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,20,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[4,54,0,0,0,0,11,11,0,0,0,0,0,0,0,1,0,0,0,0,60,1,0,0,0,0,0,0,60,20,0,0,0,0,6,1],[58,26,0,0,0,0,9,3,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,55,60] >;
C23.11D30 in GAP, Magma, Sage, TeX
C_2^3._{11}D_{30}
% in TeX
G:=Group("C2^3.11D30");
// GroupNames label
G:=SmallGroup(480,850);
// by ID
G=gap.SmallGroup(480,850);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,64,590,219,2693,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^30=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^29>;
// generators/relations