Copied to
clipboard

G = C23.11D30order 480 = 25·3·5

6th non-split extension by C23 of D30 acting via D30/C15=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.11D30, Dic15.20D4, (C2×C4).8D30, C22⋊C45D15, C6.101(D4×D5), (C2×C20).34D6, C2.10(D4×D15), D303C46C2, (C2×Dic30)⋊6C2, (C2×C12).34D10, C30.309(C2×D4), C10.103(S3×D4), (C4×Dic15)⋊18C2, C6.98(C4○D20), C30.38D45C2, C1519(C4.4D4), (C22×C6).60D10, (C22×C10).75D6, C10.98(C4○D12), C30.171(C4○D4), C6.93(D42D5), C2.9(D42D15), (C2×C60).175C22, (C2×C30).282C23, C35(Dic5.5D4), C55(C23.11D6), C10.93(D42S3), (C22×C30).16C22, C2.12(D6011C2), (C2×Dic15).8C22, (C22×D15).5C22, C22.44(C22×D15), (C5×C22⋊C4)⋊7S3, (C3×C22⋊C4)⋊7D5, (C15×C22⋊C4)⋊9C2, (C2×C157D4).4C2, (C2×C6).278(C22×D5), (C2×C10).277(C22×S3), SmallGroup(480,850)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C23.11D30
C1C5C15C30C2×C30C22×D15D303C4 — C23.11D30
C15C2×C30 — C23.11D30
C1C22C22⋊C4

Generators and relations for C23.11D30
 G = < a,b,c,d,e | a2=b2=c2=1, d30=b, e2=cb=bc, eae-1=ab=ba, dad-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=cd29 >

Subgroups: 932 in 152 conjugacy classes, 49 normal (47 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C15, C42, C22⋊C4, C22⋊C4, C2×D4, C2×Q8, Dic5, C20, D10, C2×C10, C2×C10, Dic6, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, D15, C30, C30, C4.4D4, Dic10, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×C10, C4×Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C2×Dic6, C2×C3⋊D4, Dic15, Dic15, C60, D30, C2×C30, C2×C30, C4×Dic5, D10⋊C4, C23.D5, C5×C22⋊C4, C2×Dic10, C2×C5⋊D4, C23.11D6, Dic30, C2×Dic15, C157D4, C2×C60, C22×D15, C22×C30, Dic5.5D4, C4×Dic15, D303C4, C30.38D4, C15×C22⋊C4, C2×Dic30, C2×C157D4, C23.11D30
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C22×S3, D15, C4.4D4, C22×D5, C4○D12, S3×D4, D42S3, D30, C4○D20, D4×D5, D42D5, C23.11D6, C22×D15, Dic5.5D4, D6011C2, D4×D15, D42D15, C23.11D30

Smallest permutation representation of C23.11D30
On 240 points
Generators in S240
(1 216)(2 87)(3 218)(4 89)(5 220)(6 91)(7 222)(8 93)(9 224)(10 95)(11 226)(12 97)(13 228)(14 99)(15 230)(16 101)(17 232)(18 103)(19 234)(20 105)(21 236)(22 107)(23 238)(24 109)(25 240)(26 111)(27 182)(28 113)(29 184)(30 115)(31 186)(32 117)(33 188)(34 119)(35 190)(36 61)(37 192)(38 63)(39 194)(40 65)(41 196)(42 67)(43 198)(44 69)(45 200)(46 71)(47 202)(48 73)(49 204)(50 75)(51 206)(52 77)(53 208)(54 79)(55 210)(56 81)(57 212)(58 83)(59 214)(60 85)(62 142)(64 144)(66 146)(68 148)(70 150)(72 152)(74 154)(76 156)(78 158)(80 160)(82 162)(84 164)(86 166)(88 168)(90 170)(92 172)(94 174)(96 176)(98 178)(100 180)(102 122)(104 124)(106 126)(108 128)(110 130)(112 132)(114 134)(116 136)(118 138)(120 140)(121 231)(123 233)(125 235)(127 237)(129 239)(131 181)(133 183)(135 185)(137 187)(139 189)(141 191)(143 193)(145 195)(147 197)(149 199)(151 201)(153 203)(155 205)(157 207)(159 209)(161 211)(163 213)(165 215)(167 217)(169 219)(171 221)(173 223)(175 225)(177 227)(179 229)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(121 151)(122 152)(123 153)(124 154)(125 155)(126 156)(127 157)(128 158)(129 159)(130 160)(131 161)(132 162)(133 163)(134 164)(135 165)(136 166)(137 167)(138 168)(139 169)(140 170)(141 171)(142 172)(143 173)(144 174)(145 175)(146 176)(147 177)(148 178)(149 179)(150 180)(181 211)(182 212)(183 213)(184 214)(185 215)(186 216)(187 217)(188 218)(189 219)(190 220)(191 221)(192 222)(193 223)(194 224)(195 225)(196 226)(197 227)(198 228)(199 229)(200 230)(201 231)(202 232)(203 233)(204 234)(205 235)(206 236)(207 237)(208 238)(209 239)(210 240)
(1 166)(2 167)(3 168)(4 169)(5 170)(6 171)(7 172)(8 173)(9 174)(10 175)(11 176)(12 177)(13 178)(14 179)(15 180)(16 121)(17 122)(18 123)(19 124)(20 125)(21 126)(22 127)(23 128)(24 129)(25 130)(26 131)(27 132)(28 133)(29 134)(30 135)(31 136)(32 137)(33 138)(34 139)(35 140)(36 141)(37 142)(38 143)(39 144)(40 145)(41 146)(42 147)(43 148)(44 149)(45 150)(46 151)(47 152)(48 153)(49 154)(50 155)(51 156)(52 157)(53 158)(54 159)(55 160)(56 161)(57 162)(58 163)(59 164)(60 165)(61 191)(62 192)(63 193)(64 194)(65 195)(66 196)(67 197)(68 198)(69 199)(70 200)(71 201)(72 202)(73 203)(74 204)(75 205)(76 206)(77 207)(78 208)(79 209)(80 210)(81 211)(82 212)(83 213)(84 214)(85 215)(86 216)(87 217)(88 218)(89 219)(90 220)(91 221)(92 222)(93 223)(94 224)(95 225)(96 226)(97 227)(98 228)(99 229)(100 230)(101 231)(102 232)(103 233)(104 234)(105 235)(106 236)(107 237)(108 238)(109 239)(110 240)(111 181)(112 182)(113 183)(114 184)(115 185)(116 186)(117 187)(118 188)(119 189)(120 190)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 30 136 165)(2 164 137 29)(3 28 138 163)(4 162 139 27)(5 26 140 161)(6 160 141 25)(7 24 142 159)(8 158 143 23)(9 22 144 157)(10 156 145 21)(11 20 146 155)(12 154 147 19)(13 18 148 153)(14 152 149 17)(15 16 150 151)(31 60 166 135)(32 134 167 59)(33 58 168 133)(34 132 169 57)(35 56 170 131)(36 130 171 55)(37 54 172 129)(38 128 173 53)(39 52 174 127)(40 126 175 51)(41 50 176 125)(42 124 177 49)(43 48 178 123)(44 122 179 47)(45 46 180 121)(61 80 221 240)(62 239 222 79)(63 78 223 238)(64 237 224 77)(65 76 225 236)(66 235 226 75)(67 74 227 234)(68 233 228 73)(69 72 229 232)(70 231 230 71)(81 120 181 220)(82 219 182 119)(83 118 183 218)(84 217 184 117)(85 116 185 216)(86 215 186 115)(87 114 187 214)(88 213 188 113)(89 112 189 212)(90 211 190 111)(91 110 191 210)(92 209 192 109)(93 108 193 208)(94 207 194 107)(95 106 195 206)(96 205 196 105)(97 104 197 204)(98 203 198 103)(99 102 199 202)(100 201 200 101)

G:=sub<Sym(240)| (1,216)(2,87)(3,218)(4,89)(5,220)(6,91)(7,222)(8,93)(9,224)(10,95)(11,226)(12,97)(13,228)(14,99)(15,230)(16,101)(17,232)(18,103)(19,234)(20,105)(21,236)(22,107)(23,238)(24,109)(25,240)(26,111)(27,182)(28,113)(29,184)(30,115)(31,186)(32,117)(33,188)(34,119)(35,190)(36,61)(37,192)(38,63)(39,194)(40,65)(41,196)(42,67)(43,198)(44,69)(45,200)(46,71)(47,202)(48,73)(49,204)(50,75)(51,206)(52,77)(53,208)(54,79)(55,210)(56,81)(57,212)(58,83)(59,214)(60,85)(62,142)(64,144)(66,146)(68,148)(70,150)(72,152)(74,154)(76,156)(78,158)(80,160)(82,162)(84,164)(86,166)(88,168)(90,170)(92,172)(94,174)(96,176)(98,178)(100,180)(102,122)(104,124)(106,126)(108,128)(110,130)(112,132)(114,134)(116,136)(118,138)(120,140)(121,231)(123,233)(125,235)(127,237)(129,239)(131,181)(133,183)(135,185)(137,187)(139,189)(141,191)(143,193)(145,195)(147,197)(149,199)(151,201)(153,203)(155,205)(157,207)(159,209)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,166)(2,167)(3,168)(4,169)(5,170)(6,171)(7,172)(8,173)(9,174)(10,175)(11,176)(12,177)(13,178)(14,179)(15,180)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,162)(58,163)(59,164)(60,165)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,211)(82,212)(83,213)(84,214)(85,215)(86,216)(87,217)(88,218)(89,219)(90,220)(91,221)(92,222)(93,223)(94,224)(95,225)(96,226)(97,227)(98,228)(99,229)(100,230)(101,231)(102,232)(103,233)(104,234)(105,235)(106,236)(107,237)(108,238)(109,239)(110,240)(111,181)(112,182)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,30,136,165)(2,164,137,29)(3,28,138,163)(4,162,139,27)(5,26,140,161)(6,160,141,25)(7,24,142,159)(8,158,143,23)(9,22,144,157)(10,156,145,21)(11,20,146,155)(12,154,147,19)(13,18,148,153)(14,152,149,17)(15,16,150,151)(31,60,166,135)(32,134,167,59)(33,58,168,133)(34,132,169,57)(35,56,170,131)(36,130,171,55)(37,54,172,129)(38,128,173,53)(39,52,174,127)(40,126,175,51)(41,50,176,125)(42,124,177,49)(43,48,178,123)(44,122,179,47)(45,46,180,121)(61,80,221,240)(62,239,222,79)(63,78,223,238)(64,237,224,77)(65,76,225,236)(66,235,226,75)(67,74,227,234)(68,233,228,73)(69,72,229,232)(70,231,230,71)(81,120,181,220)(82,219,182,119)(83,118,183,218)(84,217,184,117)(85,116,185,216)(86,215,186,115)(87,114,187,214)(88,213,188,113)(89,112,189,212)(90,211,190,111)(91,110,191,210)(92,209,192,109)(93,108,193,208)(94,207,194,107)(95,106,195,206)(96,205,196,105)(97,104,197,204)(98,203,198,103)(99,102,199,202)(100,201,200,101)>;

G:=Group( (1,216)(2,87)(3,218)(4,89)(5,220)(6,91)(7,222)(8,93)(9,224)(10,95)(11,226)(12,97)(13,228)(14,99)(15,230)(16,101)(17,232)(18,103)(19,234)(20,105)(21,236)(22,107)(23,238)(24,109)(25,240)(26,111)(27,182)(28,113)(29,184)(30,115)(31,186)(32,117)(33,188)(34,119)(35,190)(36,61)(37,192)(38,63)(39,194)(40,65)(41,196)(42,67)(43,198)(44,69)(45,200)(46,71)(47,202)(48,73)(49,204)(50,75)(51,206)(52,77)(53,208)(54,79)(55,210)(56,81)(57,212)(58,83)(59,214)(60,85)(62,142)(64,144)(66,146)(68,148)(70,150)(72,152)(74,154)(76,156)(78,158)(80,160)(82,162)(84,164)(86,166)(88,168)(90,170)(92,172)(94,174)(96,176)(98,178)(100,180)(102,122)(104,124)(106,126)(108,128)(110,130)(112,132)(114,134)(116,136)(118,138)(120,140)(121,231)(123,233)(125,235)(127,237)(129,239)(131,181)(133,183)(135,185)(137,187)(139,189)(141,191)(143,193)(145,195)(147,197)(149,199)(151,201)(153,203)(155,205)(157,207)(159,209)(161,211)(163,213)(165,215)(167,217)(169,219)(171,221)(173,223)(175,225)(177,227)(179,229), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(121,151)(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)(147,177)(148,178)(149,179)(150,180)(181,211)(182,212)(183,213)(184,214)(185,215)(186,216)(187,217)(188,218)(189,219)(190,220)(191,221)(192,222)(193,223)(194,224)(195,225)(196,226)(197,227)(198,228)(199,229)(200,230)(201,231)(202,232)(203,233)(204,234)(205,235)(206,236)(207,237)(208,238)(209,239)(210,240), (1,166)(2,167)(3,168)(4,169)(5,170)(6,171)(7,172)(8,173)(9,174)(10,175)(11,176)(12,177)(13,178)(14,179)(15,180)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,127)(23,128)(24,129)(25,130)(26,131)(27,132)(28,133)(29,134)(30,135)(31,136)(32,137)(33,138)(34,139)(35,140)(36,141)(37,142)(38,143)(39,144)(40,145)(41,146)(42,147)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,155)(51,156)(52,157)(53,158)(54,159)(55,160)(56,161)(57,162)(58,163)(59,164)(60,165)(61,191)(62,192)(63,193)(64,194)(65,195)(66,196)(67,197)(68,198)(69,199)(70,200)(71,201)(72,202)(73,203)(74,204)(75,205)(76,206)(77,207)(78,208)(79,209)(80,210)(81,211)(82,212)(83,213)(84,214)(85,215)(86,216)(87,217)(88,218)(89,219)(90,220)(91,221)(92,222)(93,223)(94,224)(95,225)(96,226)(97,227)(98,228)(99,229)(100,230)(101,231)(102,232)(103,233)(104,234)(105,235)(106,236)(107,237)(108,238)(109,239)(110,240)(111,181)(112,182)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,30,136,165)(2,164,137,29)(3,28,138,163)(4,162,139,27)(5,26,140,161)(6,160,141,25)(7,24,142,159)(8,158,143,23)(9,22,144,157)(10,156,145,21)(11,20,146,155)(12,154,147,19)(13,18,148,153)(14,152,149,17)(15,16,150,151)(31,60,166,135)(32,134,167,59)(33,58,168,133)(34,132,169,57)(35,56,170,131)(36,130,171,55)(37,54,172,129)(38,128,173,53)(39,52,174,127)(40,126,175,51)(41,50,176,125)(42,124,177,49)(43,48,178,123)(44,122,179,47)(45,46,180,121)(61,80,221,240)(62,239,222,79)(63,78,223,238)(64,237,224,77)(65,76,225,236)(66,235,226,75)(67,74,227,234)(68,233,228,73)(69,72,229,232)(70,231,230,71)(81,120,181,220)(82,219,182,119)(83,118,183,218)(84,217,184,117)(85,116,185,216)(86,215,186,115)(87,114,187,214)(88,213,188,113)(89,112,189,212)(90,211,190,111)(91,110,191,210)(92,209,192,109)(93,108,193,208)(94,207,194,107)(95,106,195,206)(96,205,196,105)(97,104,197,204)(98,203,198,103)(99,102,199,202)(100,201,200,101) );

G=PermutationGroup([[(1,216),(2,87),(3,218),(4,89),(5,220),(6,91),(7,222),(8,93),(9,224),(10,95),(11,226),(12,97),(13,228),(14,99),(15,230),(16,101),(17,232),(18,103),(19,234),(20,105),(21,236),(22,107),(23,238),(24,109),(25,240),(26,111),(27,182),(28,113),(29,184),(30,115),(31,186),(32,117),(33,188),(34,119),(35,190),(36,61),(37,192),(38,63),(39,194),(40,65),(41,196),(42,67),(43,198),(44,69),(45,200),(46,71),(47,202),(48,73),(49,204),(50,75),(51,206),(52,77),(53,208),(54,79),(55,210),(56,81),(57,212),(58,83),(59,214),(60,85),(62,142),(64,144),(66,146),(68,148),(70,150),(72,152),(74,154),(76,156),(78,158),(80,160),(82,162),(84,164),(86,166),(88,168),(90,170),(92,172),(94,174),(96,176),(98,178),(100,180),(102,122),(104,124),(106,126),(108,128),(110,130),(112,132),(114,134),(116,136),(118,138),(120,140),(121,231),(123,233),(125,235),(127,237),(129,239),(131,181),(133,183),(135,185),(137,187),(139,189),(141,191),(143,193),(145,195),(147,197),(149,199),(151,201),(153,203),(155,205),(157,207),(159,209),(161,211),(163,213),(165,215),(167,217),(169,219),(171,221),(173,223),(175,225),(177,227),(179,229)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(121,151),(122,152),(123,153),(124,154),(125,155),(126,156),(127,157),(128,158),(129,159),(130,160),(131,161),(132,162),(133,163),(134,164),(135,165),(136,166),(137,167),(138,168),(139,169),(140,170),(141,171),(142,172),(143,173),(144,174),(145,175),(146,176),(147,177),(148,178),(149,179),(150,180),(181,211),(182,212),(183,213),(184,214),(185,215),(186,216),(187,217),(188,218),(189,219),(190,220),(191,221),(192,222),(193,223),(194,224),(195,225),(196,226),(197,227),(198,228),(199,229),(200,230),(201,231),(202,232),(203,233),(204,234),(205,235),(206,236),(207,237),(208,238),(209,239),(210,240)], [(1,166),(2,167),(3,168),(4,169),(5,170),(6,171),(7,172),(8,173),(9,174),(10,175),(11,176),(12,177),(13,178),(14,179),(15,180),(16,121),(17,122),(18,123),(19,124),(20,125),(21,126),(22,127),(23,128),(24,129),(25,130),(26,131),(27,132),(28,133),(29,134),(30,135),(31,136),(32,137),(33,138),(34,139),(35,140),(36,141),(37,142),(38,143),(39,144),(40,145),(41,146),(42,147),(43,148),(44,149),(45,150),(46,151),(47,152),(48,153),(49,154),(50,155),(51,156),(52,157),(53,158),(54,159),(55,160),(56,161),(57,162),(58,163),(59,164),(60,165),(61,191),(62,192),(63,193),(64,194),(65,195),(66,196),(67,197),(68,198),(69,199),(70,200),(71,201),(72,202),(73,203),(74,204),(75,205),(76,206),(77,207),(78,208),(79,209),(80,210),(81,211),(82,212),(83,213),(84,214),(85,215),(86,216),(87,217),(88,218),(89,219),(90,220),(91,221),(92,222),(93,223),(94,224),(95,225),(96,226),(97,227),(98,228),(99,229),(100,230),(101,231),(102,232),(103,233),(104,234),(105,235),(106,236),(107,237),(108,238),(109,239),(110,240),(111,181),(112,182),(113,183),(114,184),(115,185),(116,186),(117,187),(118,188),(119,189),(120,190)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,30,136,165),(2,164,137,29),(3,28,138,163),(4,162,139,27),(5,26,140,161),(6,160,141,25),(7,24,142,159),(8,158,143,23),(9,22,144,157),(10,156,145,21),(11,20,146,155),(12,154,147,19),(13,18,148,153),(14,152,149,17),(15,16,150,151),(31,60,166,135),(32,134,167,59),(33,58,168,133),(34,132,169,57),(35,56,170,131),(36,130,171,55),(37,54,172,129),(38,128,173,53),(39,52,174,127),(40,126,175,51),(41,50,176,125),(42,124,177,49),(43,48,178,123),(44,122,179,47),(45,46,180,121),(61,80,221,240),(62,239,222,79),(63,78,223,238),(64,237,224,77),(65,76,225,236),(66,235,226,75),(67,74,227,234),(68,233,228,73),(69,72,229,232),(70,231,230,71),(81,120,181,220),(82,219,182,119),(83,118,183,218),(84,217,184,117),(85,116,185,216),(86,215,186,115),(87,114,187,214),(88,213,188,113),(89,112,189,212),(90,211,190,111),(91,110,191,210),(92,209,192,109),(93,108,193,208),(94,207,194,107),(95,106,195,206),(96,205,196,105),(97,104,197,204),(98,203,198,103),(99,102,199,202),(100,201,200,101)]])

84 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D6E10A···10F10G10H10I10J12A12B12C12D15A15B15C15D20A···20H30A···30L30M···30T60A···60P
order122222344444444556666610···1010101010121212121515151520···2030···3030···3060···60
size11114602224303030306022222442···24444444422224···42···24···44···4

84 irreducible representations

dim111111122222222222222444444
type++++++++++++++++++-+-+-
imageC1C2C2C2C2C2C2S3D4D5D6D6C4○D4D10D10D15C4○D12D30D30C4○D20D6011C2S3×D4D42S3D4×D5D42D5D4×D15D42D15
kernelC23.11D30C4×Dic15D303C4C30.38D4C15×C22⋊C4C2×Dic30C2×C157D4C5×C22⋊C4Dic15C3×C22⋊C4C2×C20C22×C10C30C2×C12C22×C6C22⋊C4C10C2×C4C23C6C2C10C10C6C6C2C2
# reps1121111122214424484816112244

Matrix representation of C23.11D30 in GL6(𝔽61)

47440000
33140000
001000
000100
0000600
0000201
,
6000000
0600000
001000
000100
0000600
0000060
,
100000
010000
001000
000100
0000600
0000060
,
4110000
54110000
0006000
001100
0000606
0000201
,
5890000
2630000
0006000
0060000
0000155
0000060

G:=sub<GL(6,GF(61))| [47,33,0,0,0,0,44,14,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,20,0,0,0,0,0,1],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[4,54,0,0,0,0,11,11,0,0,0,0,0,0,0,1,0,0,0,0,60,1,0,0,0,0,0,0,60,20,0,0,0,0,6,1],[58,26,0,0,0,0,9,3,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,55,60] >;

C23.11D30 in GAP, Magma, Sage, TeX

C_2^3._{11}D_{30}
% in TeX

G:=Group("C2^3.11D30");
// GroupNames label

G:=SmallGroup(480,850);
// by ID

G=gap.SmallGroup(480,850);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,253,64,590,219,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^30=b,e^2=c*b=b*c,e*a*e^-1=a*b=b*a,d*a*d^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^29>;
// generators/relations

׿
×
𝔽